设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知 且.
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。
科目:高中数学 来源: 题型:解答题
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.
(1)求双曲线的方程;
(2)以双曲线的另一焦点为圆心的圆与直线相切,圆:.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点是椭圆()的左焦点,点,分别是椭圆的左顶点和上顶点,椭圆的离心率为,点在轴上,且,过点作斜率为的直线与由三点,,确定的圆相交于,两点,满足.
(1)若的面积为,求椭圆的方程;
(2)直线的斜率是否为定值?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:设分别为曲线和上的点,把两点距离的最小值称为曲线到的距离.
(1)求曲线到直线的距离;
(2)已知曲线到直线的距离为,求实数的值;
(3)求圆到曲线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的中心在原点,焦点在轴上,短轴长为,离心率为.
(I)求椭圆的方程;
(II) 为椭圆上满足的面积为的任意两点,为线段的中点,射线交椭圆与点,设,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,分别是椭圆的左、右焦点,关于直线的对称点是圆的一条直径的两个端点。
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为,。当最大时,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的右焦点在圆上,直线交椭圆于、两点.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 若OM⊥ON(为坐标原点),求的值;
(Ⅲ) 设点关于轴的对称点为(与不重合),且直线与轴交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为,点是抛物线上的一点,且其纵坐标为4,.
(1)求抛物线的方程;
(2)设点是抛物线上的两点,的角平分线与轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线过点,求弦的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com