定义:设分别为曲线和上的点,把两点距离的最小值称为曲线到的距离.
(1)求曲线到直线的距离;
(2)已知曲线到直线的距离为,求实数的值;
(3)求圆到曲线的距离.
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的方程为,其离心率为,经过椭圆焦点且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,曲线y=x-6x+1与坐标轴的交点都在圆C上.
(Ⅰ)求圆C的方程;
(Ⅱ)试判断是否存在斜率为1的直线,使其与圆C交于A, B两点,且OA⊥OB,若存在,求出该直线方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆与直线相交于两点.
(1)若椭圆的半焦距,直线与围成的矩形的面积为8,
求椭圆的方程;
(2)若(为坐标原点),求证:;
(3)在(2)的条件下,若椭圆的离心率满足,求椭圆长轴长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系xOy中,过椭圆M:右焦点的直线交于A,B两点,P为AB的中点,且OP的斜率为.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知 且.
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.
(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com