平面直角坐标系xOy中,过椭圆M:
右焦点的直线
交
于A,B两点,P为AB的中点,且OP的斜率为
.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
科目:高中数学 来源: 题型:解答题
给定椭圆
:
,称圆心在原点
,半径为
的圆是椭圆
的“准圆”.若椭圆
的一个焦点为
,且其短轴上的一个端点到
的距离为
.
(Ⅰ)求椭圆
的方程和其“准圆”方程;
(Ⅱ)点
是椭圆
的“准圆”上的一个动点,过动点
作直线
,使得
与椭圆
都只有一个交点,试判断
是否垂直,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
(a>b>0)抛物线![]()
,从每条曲线上取两个点,将其坐标记录于下表中:
| 4 | 1 | |||
| 2 | 4 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:设
分别为曲线
和
上的点,把
两点距离的最小值称为曲线
到
的距离.
(1)求曲线
到直线
的距离;
(2)已知曲线
到直线
的距离为
,求实数
的值;
(3)求圆
到曲线
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在正方形
中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连接
,过
作
轴的垂线与
交于点
。![]()
(Ⅰ)求证:点
都在同一条抛物线上,并求抛物线
的方程;
(Ⅱ)过点
作直线
与抛物线E交于不同的两点
, 若
与
的面积之比为4:1,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,
分别是椭圆
的左、右焦点
,
关于直线
的对称点是圆
的一条直径的两个端点。
(Ⅰ)求圆
的方程;
(Ⅱ)设过点
的直线
被椭圆
和圆
所截得的弦长分别为
,
。当
最大时,求直线
的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点
及
,点
在以
、
为焦点的椭圆
上,且
、
、
构成等差数列.![]()
(1)求椭圆
的方程;
(2)如图,动直线
与椭圆
有且仅有一个公共点,点
是直线上的两点,且
,
. 求四边形
面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的对称轴为坐标轴,焦点是(0,
),(0,
),又点![]()
在椭圆
上.
(1)求椭圆
的方程;
(2)已知直线
的斜率为
,若直线
与椭圆
交于
、
两点,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com