如图,在正方形
中,
为坐标原点,点
的坐标为
,点
的坐标为
,分别将线段
和
十等分,分点分别记为
和
,连接
,过
作
轴的垂线与
交于点
。![]()
(Ⅰ)求证:点
都在同一条抛物线上,并求抛物线
的方程;
(Ⅱ)过点
作直线
与抛物线E交于不同的两点
, 若
与
的面积之比为4:1,求直线
的方程。
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,直线
:
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左焦点为
,右焦点
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,
线段
垂直平分线交
于点
,求点
的轨迹
的方程;
(Ⅲ)设
与
轴交于点
,不同的两点
在
上,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆C:
的离心率e为
, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在
轴上,一个顶点为
,且其右焦点到直线
的距离为3.
(Ⅰ)求椭圆方程;
(Ⅱ)设直线过定点
,与椭圆交于两个不同的点
,且满足
.
求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系xOy中,过椭圆M:
右焦点的直线
交
于A,B两点,P为AB的中点,且OP的斜率为
.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的焦距为
,离心率为
,其右焦点为
,过点
作直线交椭圆于另一点
.
(Ⅰ)若
,求
外接圆的方程;
(Ⅱ)若直线
与椭圆![]()
相交于两点
、
,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线
上时,求直线AB的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com