精英家教网 > 高中数学 > 题目详情

如图,在正方形中,为坐标原点,点的坐标为,点的坐标为,分别将线段十等分,分点分别记为,连接,过轴的垂线与交于点

(Ⅰ)求证:点都在同一条抛物线上,并求抛物线的方程;
(Ⅱ)过点作直线与抛物线E交于不同的两点, 若的面积之比为4:1,求直线的方程。

(Ⅰ)见解析(Ⅱ)直线的方程为,即

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点
线段垂直平分线交于点,求点的轨迹的方程;
(Ⅲ)设轴交于点,不同的两点上,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.
(Ⅰ)求椭圆方程;
(Ⅱ)设直线过定点,与椭圆交于两个不同的点,且满足
求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面直角坐标系xOy中,过椭圆M:右焦点的直线于A,B两点,P为AB的中点,且OP的斜率为.
(Ι)求M的方程;
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线

(I)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线与椭圆有相同焦点,且经过点,求其方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线上时,求直线AB的方程.

查看答案和解析>>

同步练习册答案