精英家教网 > 高中数学 > 题目详情

双曲线与椭圆有相同焦点,且经过点,求其方程。

解析试题分析:椭圆的焦点为,设双曲线方程为
过点,则,得,而
,双曲线方程为
考点:椭圆、双曲线的标准方程及几何性质。
点评:简单题,椭圆、双曲线中,a,b,c,e的关系是经常考查的知识内容,二者存在差别,应当注意。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为 为椭圆的上顶点,为坐标原点,且两焦点和短轴的两端构成边长为的正方形.
(1)求椭圆的标准方程;
(2)是否存在直线交与椭圆于,且使,使得的垂心,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,

(i) 求的最值.
(ii) 求四边形ABCD的面积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方形中,为坐标原点,点的坐标为,点的坐标为,分别将线段十等分,分点分别记为,连接,过轴的垂线与交于点

(Ⅰ)求证:点都在同一条抛物线上,并求抛物线的方程;
(Ⅱ)过点作直线与抛物线E交于不同的两点, 若的面积之比为4:1,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点关于直线的对称点是圆的一条直径的两个端点。
(Ⅰ)求圆的方程;
(Ⅱ)设过点的直线被椭圆和圆所截得的弦长分别为。当最大时,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰直角中,,点在线段上.

(Ⅰ) 若,求的长;
(Ⅱ)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且 构成等差数列.

(1)求椭圆的方程;
(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.

(Ⅰ)设为点的横坐标,证明
(Ⅱ)求点T的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

同步练习册答案