已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.
(Ⅰ)设为点的横坐标,证明;
(Ⅱ)求点T的轨迹的方程.
科目:高中数学 来源: 题型:解答题
若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(Ⅰ)若,求外接圆的方程;
(Ⅱ)若直线与椭圆相交于两点、,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点。
(I)写出C的直角坐标方程,并求M,N的极坐标;
(II)设MN的中点为P,求直线OP的极坐标方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的方程为,过点作圆的两条切线,切点分别为、,直线恰好经过椭圆的右顶点和上顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆(垂直于轴的一条弦,所在直线的方程为且是椭圆上异于、的任意一点,直线、分别交定直线于两点、,求证.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆与离心率为的椭圆()相切于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点引两条互相垂直的两直线、与两曲线分别交于点、与点、(均不重合).
(ⅰ)若为椭圆上任一点,记点到两直线的距离分别为、,求的最大值;
(ⅱ)若,求与的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,射线OA: x-y=0(x≥0),
OB: x+2y=0(x≥0),过点P(1,0)作直线分别交射线OA、OB于A、B两点.
(1)当AB中点为P时,求直线AB的方程;
(2)当AB中点在直线上时,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设圆C与两圆,中的一个内切,另一个外切.
(1)求C的圆心轨迹L的方程;
(2)设直线l是圆O:在P(x0,y0)(x0y0 ≠ 0)处的切线,且P在圆上,l与轨迹L相交不同的A,B两点,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com