精英家教网 > 高中数学 > 题目详情

已知圆的方程为,过点作圆的两条切线,切点分别为,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆垂直于轴的一条弦,所在直线的方程为是椭圆上异于的任意一点,直线分别交定直线于两点,求证.

(Ⅰ)  (Ⅱ)联立方程组表示出向量,再证.

解析试题分析:(Ⅰ) 观察知,是圆的一条切线,切点为
为圆心,根据圆的切线性质,
所以, 所以直线的方程为.
线轴相交于,依题意,所求椭圆的方程为 
(Ⅱ) 椭圆方程为,设
则有
在直线的方程中,令,整理得
           ①
同理,     ②
②,并将代入得
 
===.
=   
,∴

考点:直线与圆锥曲线的关系;椭圆的标准方程.
点评:本题考查直线与圆锥曲线的位置关系,考查椭圆的标准方程,考查数形结合思想,考查学生的运算能力、分析问题解决问题的能力,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线C:与椭圆共焦点,

(Ⅰ)求的值和抛物线C的准线方程;
(Ⅱ)若P为抛物线C上位于轴下方的一点,直线是抛物线C在点P处的切线,问是否存在平行于的直线与抛物线C交于不同的两点A,B,且使?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在等腰直角中,,点在线段上.

(Ⅰ) 若,求的长;
(Ⅱ)若点在线段上,且,问:当取何值时,的面积最小?并求出面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别求适合下列条件圆锥曲线的标准方程:
(1)焦点 为且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.

(Ⅰ)设为点的横坐标,证明
(Ⅱ)求点T的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的椭圆C:的一个焦点为为椭圆C上一点,的面积为
(1)求椭圆C的方程;
(2)是否存在平行于OM的直线,使得直线与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是直线被椭圆所截得的线段中点,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为几点,轴的正半轴为极轴建立极坐标系.已知直线上两点的极坐标分别为,圆的参数方程(为参数).
(Ⅰ)设为线段的中点,求直线的平面直角坐标方程;
(Ⅱ)判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过抛物线>0)的顶点作两条互相垂直的弦OA、OB。

⑴设OA的斜率为k,试用k表示点A、B的坐标;
⑵求弦AB中点M的轨迹方程。

查看答案和解析>>

同步练习册答案