精英家教网 > 高中数学 > 题目详情

已知抛物线C:与椭圆共焦点,

(Ⅰ)求的值和抛物线C的准线方程;
(Ⅱ)若P为抛物线C上位于轴下方的一点,直线是抛物线C在点P处的切线,问是否存在平行于的直线与抛物线C交于不同的两点A,B,且使?若存在,求出直线的方程;若不存在,请说明理由.

(Ⅰ);(Ⅱ)不存在满足条件的直线.

解析试题分析:(Ⅰ)因为抛物线C:与椭圆共焦点,
所以抛物线C:的焦点为(1,0)       (1分)
所以                                  (3分)
抛物线C的准线方程为                        (4分)
(Ⅱ)由(Ⅰ)知抛物线C:
因为 P为抛物线C上位于轴下方的一点,
所以点P满足 ,                  
所以点处的切线的斜率为 
所以平行于的直线方程可设为             (6分)
解方程组,消去得:,(7分)
因为直线与抛物线C交于不同的两点A,B,
所以, (8分)
,则
, (10分)
所以线段AB的中点为
线段AB的中垂线方程为    (12分)
知点P在线段AB的中垂线上
所以   ,               (13分)
代人上式得 ,(14分)
,所以无解.
从而不存在满足条件的直线.                            (15分)
考点:椭圆、抛物线的几何性质,直线与抛物线的位置关系,简单不等式解法。
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求抛物线准线方程时,主要运用了椭圆、抛物线的定义及几何性质。(2)作为研究直线与抛物线相交时弦长的范围问题,应用韦达定理,建立了k的不等式,进一步使问题得解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

动点与定点的距离和它到直线的距离之比是常数,记点的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,为坐标原点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量共线,
线,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合.
(1) 求椭圆C的方程;
(2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标;
(3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与
A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,设动点到定点的距离与到定直线的距离相等,记的轨迹为.又直线的一个方向向量且过点交于两点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在原点,焦点在轴上,一个顶点为,且其右焦点到直线的距离为3.
(Ⅰ)求椭圆方程;
(Ⅱ)设直线过定点,与椭圆交于两个不同的点,且满足
求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,抛物线

(I)
(II)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的方程为,过点作圆的两条切线,切点分别为,直线恰好经过椭圆的右顶点和上顶点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆垂直于轴的一条弦,所在直线的方程为是椭圆上异于的任意一点,直线分别交定直线于两点,求证.

查看答案和解析>>

同步练习册答案