精英家教网 > 高中数学 > 题目详情

动点与定点的距离和它到直线的距离之比是常数,记点的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,为坐标原点,求面积的最大值.

(I);(II)

解析试题分析:(I)找出题中的相等关系,列出化简即得曲线的方程;(II)先用弦长公式得,由点到直线距离公式得的高,列出面积表达式,最后选择合适的方法求面积的最大值.
试题解析:(I)设是点到直线的距离,根据题意,点的轨迹就是集合
  
由此得       
将上式两边平方,并化简得

所以曲线的方程为  
(II)由
.

.  
于是
   
又原点到直线的距离, 
所以(当时取等号)
所以面积的最大值为
考点:1、曲线方程求法;2、直线与圆锥曲线位置关系;3、解析几何最值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.
(1)当线段AB的中点在直线上时,求直线的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点

(1)求椭圆的方程;
(2)求的最小值,并求此时圆的方程;
(3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,
求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,曲线与曲线相交于四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为F1(-1,0),F2(1,0),过F1作与x轴不重合的直线l交椭圆于A,B两点.
(I)若ΔABF2为正三角形,求椭圆的离心率;
(II)若椭圆的离心率满足,为坐标原点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,为其右焦点,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若点,问是否存在直线,使与椭圆交于两点,且.若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆的方程;
(II)直线与椭圆交于两点,且线段的垂直平分线经过点,求为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C:与椭圆共焦点,

(Ⅰ)求的值和抛物线C的准线方程;
(Ⅱ)若P为抛物线C上位于轴下方的一点,直线是抛物线C在点P处的切线,问是否存在平行于的直线与抛物线C交于不同的两点A,B,且使?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案