如图,曲线与曲线相交于、、、四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线与的交点坐标.
(1)(2) 的最大值为16.,对角线与交点坐标为.
解析试题分析:(1)通过直线与抛物线联立,借助判别式和韦达定理求解参数的范围;(2)根据图形的对称性,明确四边系ABCD的面积为,然后借助韦达定理将三角形面积表示为含有参数的表达式,最后化简通过构造函数, 利那用求导的方法研究最值. 分别求出对角线与的直线方程,进而求交点坐标.
试题解析:(1) 联立曲线消去可得,
,根据条件可得,解得.
(4分)
(2) 设,,,,
则
.
(6分)
令,则,, (7分)
设,
则令,
可得当时,的最大值为,从而的最大值为16.
此时,即,则. (9分)
联立曲线的方程消去并整理得
,解得,,
所以点坐标为,点坐标为,
,
则直线的方程为, (11分)
当时,,由对称性可知与的交点在轴上,
即对角线与交点坐标为. (12分)
考点:1.直线与圆锥曲线的综合应用能力;2.直线与圆锥曲线的相关知识;3.圆锥曲线中极值的求取.
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:()上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为,,点是右准线上任意一点,过作直 线的垂线交椭圆于点.
(1)求椭圆的标准方程;
(2)证明:直线与直线的斜率之积是定值;
(3)点的纵坐标为3,过作动直线与椭圆交于两个不同点,在线段上取点,满足,试证明点恒在一定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的左右顶点分别为,离心率.过该椭圆上任一点作轴,垂足为,点在的延长线上,且.
(1)求椭圆的方程;
(2)求动点的轨迹的方程;
(3)设直线(点不同于)与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:的半径等于椭圆E:(a>b>0)的短半轴长,椭圆E的右焦点F在圆C内,且到直线l:y=x-的距离为-,点M是直线l与圆C的公共点,设直线l交椭圆E于不同的两点A(x1,y1),B(x2,y2).
(Ⅰ)求椭圆E的方程;
(Ⅱ)求证:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知、分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点、,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆C: 的左、右焦点分别为,离心率为,点A是椭圆上任一点,的周长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点任作一动直线l交椭圆C于两点,记,若在线段上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com