精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点,焦点在轴上,焦距为,且经过点,直线交椭圆于不同的两点A,B.
(1)求的取值范围;,
(2)若直线不经过点,求证:直线的斜率互为相反数.

(1);(2)证明过程详见解析.

解析试题分析:本题主要考查椭圆的标准方程、韦达定理等基础知识,考查运算求解能力、综合分析和解决问题的能力.第一问,用待定系数法,先设出椭圆方程,根据焦距和椭圆过,解出,得到椭圆方程,由于直线与椭圆有2个交点,所以联立得到的关于的方程有2个不相等实根,所以利用求解;第二问,分析题意得只需证明,设出点坐标,利用第一问得出的关于的方程找到,将化简,把的结果代入即可得证.
试题解析:(1)设椭圆的方程为,因为,所以
又因为椭圆过点,所以,解得,故椭圆方程为.   3分
代入并整理得
,解得.        6分
(2)设直线的斜率分别为,只要证明.
,则.       9分

分子


所以直线的斜率互为相反数.        12分
考点:1.椭圆的标准方程;2.韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点
(1)求椭圆的方程;
(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离是
(Ⅰ)求双曲线的方程及渐近线方程;
(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是抛物线上相异两点,且满足
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为4,且过点
(1)求椭圆的方程;
(2)设是椭圆上的三点,若,点为线段的中点,两点的坐标分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,点P(-1,0)是其准线与轴的焦点,过P的直线与抛物线C交于A、B两点.
(1)当线段AB的中点在直线上时,求直线的方程;
(2)设F为抛物线C的焦点,当A为线段PB中点时,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,曲线与曲线相交于四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线的交点坐标.

查看答案和解析>>

同步练习册答案