已知双曲线
(a>0,b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离是
.
(Ⅰ)求双曲线的方程及渐近线方程;
(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.
(Ⅰ)
,
;(Ⅱ)
=![]()
解析试题分析:本题主要考察双曲线的标准方程、韦达定理等基础知识,考察学生运算能力、综合分析和解决问题的能力.(Ⅰ)离心率为
,∴
,∴
①,直线
的方程为
即
,利用点到直线的距离公式得到:
②,两式联立,可求出
,∴双曲线方程为
,渐近线方程为:
;(Ⅱ)
两点在以
为圆心的同一个圆上,
的中垂线过点
,将直线
与双曲线
联立,消去
,可得
,设
,中点为
,则
∴
,解得
=
,并检验是否满足(
.
试题解析:(Ⅰ)直线
的方程为:
即
又原点
到直线
的距离
由
得
3分
所求双曲线方程为
4分
(注:也可由面积法求得
)
渐近线方程为:
5分
(Ⅱ)方法1:由(1)可知
(0,-1),设
,由![]()
得:
7分
∴3+3
+
=3+3
+
,
整理得: ![]()
=0,
∵
,∴
,∴
,
又由![]()
![]()
-10
+25-3
=0 (
),
∴y+y2=
, 10分
=7,  
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
的左焦点为
,且椭圆
的离心率
.
(1)求椭圆
的方程;
(2)设椭圆
的上下顶点分别为
,
是椭圆
上异于
的任一点,直线
分别交
轴于点
,证明:
为定值,并求出该定值;
(3)在椭圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为原点
,长轴长为
,一条准线的方程为
.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线![]()
与椭圆的交点为
,过
作倾斜角互补的两条直线,分别与椭圆交于
两点(
两点异于
).求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且
·
=1,|
|=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在
轴上,焦距为
,且经过点
,直线
交椭圆于不同的两点A,B.
(1)求
的取值范围;,
(2)若直线
不经过点
,求证:直线
的斜率互为相反数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:
(
)上任意一点到两焦点距离之和为
,离心率为
,左、右焦点分别为
,
,点
是右准线上任意一点,过
作直 线
的垂线
交椭圆于
点.![]()
(1)求椭圆
的标准方程;
(2)证明:直线
与直线
的斜率之积是定值;
(3)点
的纵坐标为3,过
作动直线
与椭圆交于两个不同点
,在线段
上取点
,满足
,试证明点
恒在一定直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com