精英家教网 > 高中数学 > 题目详情

已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·=1,||=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

(Ⅰ)椭圆方程为;(Ⅱ)满足题意的直线存在,方程为:.

解析试题分析:(Ⅰ)求椭圆的标准方程,可采用待定系数法求方程, 设椭圆方程为,利用条件求的值,从而得方程,因为||=1,即,再由·=1,写出,的坐标,从而求出的值,可得方程;(Ⅱ)此题属于探索性命题,解此类问题,一般都假设成立,作为条件,能求出值,则成立,若求不出值,或得到矛盾的结论,则不存在,此题假设存在直线符合题意,设出直线方程,根据直线与二次曲线位置关系的解题方法,采用设而不求的解题思维,设的坐标,根据根与系数关系,来求出直线方程,值得注意的是,当方程不恒有交点时,需用判别式讨论参数的取值范围.
试题解析:(Ⅰ)设椭圆方程为,所以,又因为,所以,则椭圆方程为
(Ⅱ)假设存在直线符合题意。由题意可设直线方程为:,代入得:,设,则,   解得: , 当时,三点共线,所以,所以,所以满足题意的直线存在,方程为:.
考点:本题考查椭圆的方程,直线与椭圆的位置关系,考查学生的运算能力、化简能力以及数形结合的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知三点P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2为焦点且过点P的椭圆的标准方程;
(2)设点P、F1、F2关于直线y=x的对称点分别为,求以为焦点且过点的双曲线的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是抛物线上的点,的焦点, 以为直径的圆轴的另一个交点为.
(Ⅰ)求的方程;
(Ⅱ)过点且斜率大于零的直线与抛物线交于两点,为坐标原点,的面积为,证明:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆两点,且成等差数列,点M(1,1),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线(a>0,b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离是
(Ⅰ)求双曲线的方程及渐近线方程;
(Ⅱ)若直线y=kx+5 (k≠0)与双曲线交于不同的两点C、D,且两点都在以A为圆心的同一个圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是抛物线上相异两点,且满足
(Ⅰ)若的中垂线经过点,求直线的方程;
(Ⅱ)若的中垂线交轴于点,求的面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为4,且过点
(1)求椭圆的方程;
(2)设是椭圆上的三点,若,点为线段的中点,两点的坐标分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.

查看答案和解析>>

同步练习册答案