精英家教网 > 高中数学 > 题目详情

已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆两点,且成等差数列,点M(1,1),求的最大值.

(1);(2).

解析试题分析:(1)设出椭圆标准方程,根据已知条件解出即可;(2)由题意可知,直线的斜率存在且不为,故可设直线的方程为,A,B点坐标为,联立直线和椭圆方程,利用韦达定理得,然后利用直线的斜率依次成等差数列得出,又,所以,即,然后求出弦长,计算三角形面积,求其最大值.
试题解析:1)设椭圆方程为,由题意知
,…①
,…②
联立①②解得,,所以椭圆方程为        (4分)
2)由题意可知,直线的斜率存在且不为,故可设直线的方程为
满足
消去

,.
因为直线的斜率依次成等差数列,
所以,,即
,所以
.                                     (9分)
联立    易得弦AB的长为  
又点M到的距离 
所以
平方再化简求导易得时S取最大值        (13分)
考点:椭圆标准方程、椭圆的离心率、直线方程、等差数列、点到直线的距离公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点.(12分)

(1)求椭圆的方程;(3分)
(2)求的最小值,并求此时圆的方程;(4分)
(3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,求证:为定值.(5分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线l与抛物线相交于不同的两点A,B.
(I)如果直线l过抛物线的焦点,求的值;
(II)如果,证明直线l必过一定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知椭圆的离心率,且椭圆C上一点到点Q的距离最大值为4,过点的直线交椭圆于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足(O为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆中心在坐标原点,是它的两个顶点,直线与直线相交于点D,与椭圆相交于两点.
(Ⅰ)若,求的值;
(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,圆,动圆与已知两圆都外切.
(1)求动圆的圆心的轨迹的方程;
(2)直线与点的轨迹交于不同的两点的中垂线与轴交于点,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·=1,||=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经过点且与直线相切的动圆的圆心轨迹为.点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点.
(1)求轨迹的方程;
(2)证明:
(3)若点到直线的距离等于,且的面积为20,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知,直线与线段分别交于点.

(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.

查看答案和解析>>

同步练习册答案