精英家教网 > 高中数学 > 题目详情

如图,在平面直角坐标系中,已知,直线与线段分别交于点.

(1)当时,求以为焦点,且过中点的椭圆的标准方程;
(2)过点作直线于点,记的外接圆为圆.
①求证:圆心在定直线上;
②圆是否恒过异于点的一个定点?若过,求出该点的坐标;若不过,请说明理由.

(1)(2)①略②.

解析试题分析:(1)根据题意,,求出,可得到方程;(2)①解法一:根据题意写出的坐标,线段的中垂线的交点就是圆心,将圆心坐标代入中,可得证;解法二:设出一般方程,将三点的坐标代入,联立求解;②根据①,写出圆系方程,联立方程解得该定点.
试题解析:(1)设椭圆的方程为,
时, 的中点为,则                                   1分
,所以,                                           2分
故椭圆的标准方程为                                           3分
(Ⅱ)①解法一:易得直线,直线
可得,再由,得                      5分
则线段的中垂线方程为,                                         6分
线段的中垂线方程为,                                 7分
,                                                    8分
解得的外接圆的圆心坐标为                              9分
经验证,该圆心在定直线上                                   10分
②由①可得圆C的方程为                  11分
该方程可整理为,
则由,解得,                        13分
所以圆恒过异于点的一个定点,该点坐标为                      14分
解法二: 易得直线,直线           5分
所以可得,                                            6分
再由<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆两点,且成等差数列,点M(1,1),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴长为4,且过点
(1)求椭圆的方程;
(2)设是椭圆上的三点,若,点为线段的中点,两点的坐标分别为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点在轴上,且过点.

(1)求抛物线的标准方程;
(2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线与直线相切,是抛物线上两个动点,为抛物线的焦点,的垂直平分线轴交于点,且.
(1)求的值;
(2)求点的坐标;
(3)求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (t为参数,0<a<),曲线C的极坐标方程为
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆C经过点,且在x轴上截得弦长为2,记该圆圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)过点的直线m交曲线E于A,B两点,过A,B两点分别作曲线E的切线,两切线交于点C,当△ABC的面积为时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的右焦点,圆轴交于两点,是椭圆与圆的一个交点,且.
(Ⅰ)求椭圆的离心率;
(Ⅱ)过点与圆相切的直线的另一交点为,且的面积等于,求椭圆的方程.

查看答案和解析>>

同步练习册答案