已知动圆C经过点
,且在x轴上截得弦长为2,记该圆圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)过点
的直线m交曲线E于A,B两点,过A,B两点分别作曲线E的切线,两切线交于点C,当△ABC的面积为
时,求直线m的方程.
(Ⅰ)x2=2y;(Ⅱ)直线m的方程为y=±x+
.
解析试题分析:(Ⅰ)根据定义法确定轨迹为抛物线,然后借助圆C被x轴截得弦长的最小值为1求解参数m的值;(Ⅱ)利用导数的几何意义求解抛物线的切线方程,然后将三角形面积进行表示,其底边用弦长公式进行表示,高用点到直线的距离进行表示,得到含有直线m的斜率k的等式.
试题解析:(Ⅰ)设圆C的圆心坐标为(x,y),则其半径r=
.
依题意,r2-y2=1,即x2+(y-1)2-y2=1,
整理得曲线E的方程为x2=2y. …4分
(Ⅱ)设A(x1,y1),B(x2,y2),则y1=
,y2=
.
设直线m方程为y=kx+
,代入曲线E方程,得
x2-2kx-1=0,则x1+x2=2k. …6分
对y=
x2求导,得y¢=x.
于是过点A的切线为y=x1(x-x1)+
,即y=x1x-
. ①
由①同理得过点B的切线为y=x2x-
. ②
设C(x0,y0),由①、②及直线m方程得
x0=
=k,y0=x1x0-
=-
. 8分
M为抛物线的焦点,y=-
为抛物线的准线,由抛物线的定义,得
|AB|=y1+
+y2+
=k(x1+x2)+2=2(k2+1).
点C到直线m的距离d=
=
. 10分
所以△ABC的面积S=
|AB|·d=(k2+1)
.
由已知(k2+1)
=2
,有且仅有k=±1.
故直线m的方程为y=±x+
. 12分
考点:1.轨迹方程;2.抛物线的切线;3.三角形面积公式.
科目:高中数学 来源: 题型:解答题
经过点
且与直线
相切的动圆的圆心轨迹为
.点
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
.
(1)求轨迹
的方程;
(2)证明:
;
(3)若点
到直线
的距离等于
,且
的面积为20,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知
,
,
,直线
与线段
、
分别交于点
、
.![]()
(1)当
时,求以
为焦点,且过
中点的椭圆的标准方程;
(2)过点
作直线
交
于点
,记
的外接圆为圆
.
①求证:圆心
在定直线
上;
②圆
是否恒过异于点
的一个定点?若过,求出该点的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左右顶点分别为
,离心率
.过该椭圆上任一点
作
轴,垂足为
,点
在
的延长线上,且
.
(1)求椭圆的方程;
(2)求动点
的轨迹
的方程;
(3)设直线
(
点不同于
)与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率为
,
直线
:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点
的直线
与椭圆
交于
,
两点.设直线
的斜率
,在
轴上是否存在点
,使得
是以GH为底边的等腰三角形. 如果存在,求出实数
的取值范围,如果不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
分别是椭圆
:
的左、右焦点,点
在直线
上,线段
的垂直平分线经过点
.直线
与椭圆
交于不同的两点
、
,且椭圆
上存在点
,使
,其中
是坐标原点,
是实数.
(Ⅰ)求
的取值范围;
(Ⅱ)当
取何值时,
的面积最大?最大面积等于多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,且经过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点
的直线与椭圆交于
两点(
点与
点不重合),
①求
的值;
②当
为等腰直角三角形时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为半圆,
为半圆直径,
为半圆圆心,且
,
为线段
的中点,已知
,曲线
过
点,动点
在曲线
上运动且保持
的值不变.
(I)建立适当的平面直角坐标系,求曲线
的方程;
(II)过点
的直线
与曲线
交于
两点,与
所在直线交于
点,
,
证明:
为定值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com