已知椭圆C:的离心率为,
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于,两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.
(Ⅰ).
(Ⅱ)存在满足题意的点(m,0)且实数的取值范围为:.
解析试题分析:(Ⅰ)利用离心率公式,得到,利用直线与圆相切,圆心到直线的距离等于半径,得到,得到,从而得到椭圆C的方程.(Ⅱ)通过假设的方程为(),与椭圆方程联立,应用韦达定理确定交点坐标关系,利用“向量法”得到. 将表示成应用导数或均值定理确定的范围.
试题解析:(Ⅰ), 2分
∵直线:y=x+2与圆x2+y2=b2相切,
∴,解得,则a2="4." 4分
故所求椭圆C的方程为. 5分
(Ⅱ)在轴上存在点,使得是以GH为底边的等腰三角形. 6分
理由如下:
设的方程为(),
由
因为直线与椭圆C有两个交点,所以
所以,又因为,所以.
设,,则. 7分
.
=
.
由于等腰三角形中线与底边互相垂直,则. 8分
所以.
故.
即
因为,所以.所以.
设,当时,,
所以函数在上单调递增,所以
, 10分
所以 11分
(若学生用基本不等式求解无证明扣1分)
又因为,所以. 所以,.
故存在满足题意的点(m,0)且实数的取值范围为:. 12分
考点:1、椭圆的几何性质,2、直线与椭圆的位置关系,3、平面向量的坐标运算.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.
(1)求曲线的轨迹方程;
(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
抛物线与直线相切,是抛物线上两个动点,为抛物线的焦点,的垂直平分线与轴交于点,且.
(1)求的值;
(2)求点的坐标;
(3)求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动圆C经过点,且在x轴上截得弦长为2,记该圆圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)过点的直线m交曲线E于A,B两点,过A,B两点分别作曲线E的切线,两切线交于点C,当△ABC的面积为时,求直线m的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,
求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线与轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
经过点且与直线相切的动圆的圆心轨迹为.点、在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点、.
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线的距离等于,且△的面积为20,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com