精英家教网 > 高中数学 > 题目详情

已知抛物线,过轴上一点的直线与抛物线交于点两点。
证明,存在唯一一点,使得为常数,并确定点的坐标。

时,为定值,此时

解析试题分析:设),过点直线方程为,交抛物线于联立方程组
由韦达定理得…5分
使用,              7分
,                    12分
所以,时,为定值,此时。                17分
考点:直线与抛物线的位置关系,两点间的距离公式。
点评:中档题,涉及直线与圆锥曲线位置关系问题,往往通过联立方程组,应用韦达定理,简化解题过程 。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.(1)求椭圆的离心率;(2)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约公里、远地点高度约万公里的直接奔月椭圆(地球球心为一个焦点)轨道Ⅰ飞行。当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面公里、近月面公里(月球球心为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以为圆心、距月面公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测。已知地球半径约为公里,月球半径约为公里。
(Ⅰ)比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小;
(Ⅱ)以为右焦点,求椭圆轨道Ⅱ的标准方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为半圆,为半圆直径,为半圆圆心,且为线段的中点,已知,曲线点,动点在曲线上运动且保持的值不变.
(I)建立适当的平面直角坐标系,求曲线的方程;
(II)过点的直线与曲线交于两点,与所在直线交于点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点作直线与双曲线相交于两点,且为线段的中点,求这条直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示:已知过抛物线的焦点F的直线与抛物线相交于A,B两点。

(1)求证:以AF为直径的圆与x轴相切;
(2)设抛物线在A,B两点处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程;
(3)设过抛物线焦点F的直线与椭圆的交点为C、D,是否存在直线使得,若存在,求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直线与抛物线相切于点)且与轴交于点为坐标原点,定点B的坐标为.

(1)若动点满足|=,求点的轨迹.
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点,试求面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=
(3)记
(A、B、是(2)中的点),,求的值.

查看答案和解析>>

同步练习册答案