精英家教网 > 高中数学 > 题目详情

过点作直线与双曲线相交于两点,且为线段的中点,求这条直线的方程.

解析试题分析:
思路分析:根据直线经过点,设出直线方程;根据点为线段的中点,应用中点坐标公式,确定的坐标关系;
应用“点差法”确定直线的斜率。
解:依题意可得直线的斜率存在,设为
则直线的方程为  1分
                         2分
为线段的中点
                         5分
在双曲线
                         7分
           8分
               10分
经检验,直线的方程为                 12分
                            13分
考点:双曲线的标准方程,直线方程。
点评:中档题,涉及椭圆、双曲线的弦中点问题,往往可以通过使用“点差法”,确定直线的斜率。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,设抛物线的焦点为,且其准线与轴交于,以为焦点,离心率的椭圆与抛物线轴上方的一个交点为P.

(1)当时,求椭圆的方程;
(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,过轴上一点的直线与抛物线交于点两点。
证明,存在唯一一点,使得为常数,并确定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,
(i) 求的最值.
(ii) 求四边形ABCD的面积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.

(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

同步练习册答案