精英家教网 > 高中数学 > 题目详情

极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

(Ⅰ)(Ⅱ)详见解析

解析试题分析:将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.
试题解析:(Ⅰ)该椭圆的直角标方程为,                2分

所以的取值范围是                       4分
(Ⅱ)设直线的倾斜角为,直线的倾斜角为
则直线的参数方程为为参数),(5分)
代入得:
  7分
同理      9分
所以(10分)
考点:极坐标、参数方程,换元法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2)若点在第一象限,证明当时,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴两端点分别为是椭圆上的动点,以为一边在轴下方作矩形,使于点于点

(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为
直线:y=x+2与原点为圆心,以椭圆C的短轴长为直
径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线与椭圆交于两点.设直线的斜率,在轴上是否存在点,使得是以GH为底边的等腰三角形. 如果存在,求出实数的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点为,上顶点为B,离心率为,圆轴交于两点
(Ⅰ)求的值;
(Ⅱ)若,过点与圆相切的直线的另一交点为,求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设椭圆的离心率是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求为坐标原点)面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过点作直线与双曲线相交于两点,且为线段的中点,求这条直线的方程.

查看答案和解析>>

同步练习册答案