精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)先在方程两边同时乘以,然后将进行代换,边可以得到曲线的直角坐标方程;(Ⅱ)将直线的方程与抛物线方程进行联立,然后利用焦点弦公式并结合韦达定理可以求出
试题解析:解法一:(Ⅰ)由得,
即曲线的直角坐标方程为.                             3分
(Ⅱ)由直线经过点,得直线的直角坐标方程是
联立,消去,得,又点是抛物线的焦点,
由抛物线定义,得弦长.                   7分
解法二:(Ⅰ)同解法一.                                         3分
(Ⅱ)由直线经过点,得,直线的参数方程为
将直线的参数方程代入,得
所以.            7分
考点:极坐标方程、焦点弦

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆)右顶点与右焦点的距离为,短轴长为.
(I)求椭圆的方程;  
(II)过左焦点的直线与椭圆分别交于两点,若三角形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直角坐标系中,曲线的参数方程为:为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:
(Ⅰ)写出曲线和直线在直角坐标系下的方程;
(II)设点是曲线上的一个动点,求它到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,左焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的两点,且线段的中点在圆 上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,
(i) 求的最值.
(ii) 求四边形ABCD的面积;

查看答案和解析>>

同步练习册答案