精英家教网 > 高中数学 > 题目详情

已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.

(Ⅰ) ; (Ⅱ).

解析试题分析:(Ⅰ)先化简,再利用代入即可得;(Ⅱ)先化简得的直角坐标方程为,再求的圆心到直线的距离,所以动点到曲线的距离的最大值为.
试题解析:(Ⅰ)
,可得
的直角坐标方程为.               (5分)
(Ⅱ)的直角坐标方程为
由(Ⅰ)知曲线是以为圆心的圆,且圆心到直线的距离
所以动点到曲线的距离的最大值为.           (10分)
考点:1.极坐标方程;2.点到直线的距离公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为)的直线与椭圆相交于两点,A为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为.求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点的坐标分别是,直线相交于点,且它们的斜率之积为
(1)求点轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆轴有两个交点,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为为椭圆的两个焦点,点在椭圆上,且的周长为
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于两点,若为坐标原点),求证:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定点,动点到定点距离与到定点的距离的比值是.
(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当时,记动点的轨迹为曲线.
①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;
②已知是曲线上不同的两点,对于定点,有.试问无论两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为
以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
⑴ 求曲线的普通方程和曲线的直角坐标方程;
⑵ 当时,曲线相交于两点,求以线段为直径的圆的直角坐标方程.

查看答案和解析>>

同步练习册答案