精英家教网 > 高中数学 > 题目详情

已知点的坐标分别是,直线相交于点,且它们的斜率之积为
(1)求点轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).

(1);(2).

解析试题分析:(1)直接由斜率公式可求解;(2)直线方程与圆锥曲线方程联立方程组,利用弦长公式求出弦EF的长度,再由原点到直线EF的距离求出三角形高,求出三角形OEF面积的表达式,再利用基本不等式求最值.
试题解析:(1)设点的坐标为,∵,∴
整理,得,这就是动点的轨迹方程.
(2)由题意知直线的斜率存在,设的方程为 ①

将①代入得:,由,解得
,则 ②

.
,所以.
所以
所以.
考点:1、斜率公式;2、直线方程;3、椭圆方程及其性质;4、弦长公式;5、基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.
(1)若直线的斜率为,求证:
(2)设直线的斜率分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)右顶点与右焦点的距离为,短轴长为.
(I)求椭圆的方程;  
(II)过左焦点的直线与椭圆分别交于两点,若三角形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点离心率,直线的方程为.

(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的长轴两端点分别为是椭圆上的动点,以为一边在轴下方作矩形,使于点于点

(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,左焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的两点,且线段的中点在圆 上,求的值.

查看答案和解析>>

同步练习册答案