已知点的坐标分别是、,直线相交于点,且它们的斜率之积为.
(1)求点轨迹的方程;
(2)若过点的直线与(1)中的轨迹交于不同的两点,试求面积的取值范围(为坐标原点).
科目:高中数学 来源: 题型:解答题
已知椭圆()右顶点与右焦点的距离为,短轴长为.
(I)求椭圆的方程;
(II)过左焦点的直线与椭圆分别交于、两点,若三角形的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点离心率,直线的方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:+=1(a>b>0)的焦距为4,且与椭圆x2+=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的长轴两端点分别为,是椭圆上的动点,以为一边在轴下方作矩形,使,交于点,交于点.
(Ⅰ)如图(1),若,且为椭圆上顶点时,的面积为12,点到直线的距离为,求椭圆的方程;
(Ⅱ)如图(2),若,试证明:成等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点,
(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com