设抛物线
的焦点为
,其准线与
轴的交点为
,过
点的直线
交抛物线于
两点.
(1)若直线
的斜率为
,求证:
;
(2)设直线
的斜率分别为
,求
的值.
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知动直线
与椭圆
相交于
、
两点. ①若线段
中点的横坐标为
,求斜率
的值;②若点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线
以椭圆
的两个焦点为焦点,且双曲线
的一条渐近线是
,
(1)求双曲线
的方程;
(2)若直线
与双曲线
交于不同两点
,且
都在以
为圆心的圆上,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为
,焦点在
轴上,若右焦点到直线
的距离为3.
(1)求椭圆的标准方程;
(2)设直线
与椭圆相交于不同的两点
、
,当
时,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,
)。
(I)求椭圆C的方程;
(II)过P点分别以
为斜率的直线分别交椭圆C于A,B,M,N,求证:
使得![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知经过点A(-4,0)的动直线l与抛物线G:
相交于B、C,当直线l的斜率是
时,
.
(Ⅰ)求抛物线G的方程;
(Ⅱ)设线段BC的垂直平分线在y轴上的截距为b,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆
,圆
,动圆
与圆
外切并且与圆
内切,圆心
的轨迹为曲线
。
(Ⅰ)求
的方程;
(Ⅱ)
是与圆
,圆
都相切的一条直线,
与曲线
交于
,
两点,当圆
的半径最长是,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点
和上下两个顶点
是一个边长为2且∠F1B1F2为
的菱形的四个顶点.
(1)求椭圆
的方程;
(2)过右焦点F2 ,斜率为
(
)的直线
与椭圆
相交于
两点,A为椭圆的右顶点,直线
、
分别交直线
于点
、
,线段
的中点为
,记直线
的斜率为
.求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
的坐标分别是
、
,直线
相交于点
,且它们的斜率之积为
.
(1)求点
轨迹
的方程;
(2)若过点
的直线
与(1)中的轨迹
交于不同的两点
,试求
面积的取值范围(
为坐标原点).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com