已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为3.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点、,当时,求的取值范围.
(1);(2).
解析试题分析:本题考查椭圆的标准方程和几何性质、交点问题、直线的斜率、韦达定理等基础知识,考查数形结合思想,考查运算求解能力、综合分析和解决问题的能力.第一问,根据条件,设椭圆的方程,写出,得焦点,代入点到直线的距离公式,得,得到椭圆的方程;第二问,直线方程与曲线方程联立,消,得关于的一元二次方程,据条件有两个不同实根,所以,解得,利用韦达定理,求得得中点的横纵坐标,求,由,得,整理得,最后解方程组得.
试题解析:(1)依题意可设椭圆方程为, .2分
则右焦点的坐标为, .3分
由题意得,解得,
故所求椭圆的标准方程为. .5分
(2)设、、,其中为弦的中点,
由,得 .7分
因为直线与椭圆相交于不同的两点,所以
即 ①, .8分
,所以,
从而 , .9分
所以, .10分
又,所以,
因而,即 ②, .11分
把②式代入①式得,解得, .12分
由②式得,解得, .13分
综上所述,求得的取值范围为. .14分
考点:1.点到直线的距离公式;2.椭圆的标准方程;3.椭圆的性质;4.韦达定理;5.线线垂直的充要条件.
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是。
(1)求双曲线的方程;
(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别是,离心率,为椭圆上任一点,且的最大面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线交椭圆于两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为()的直线与椭圆相交于两点,直线、分别交直线 于、两点,线段的中点为.记直线的斜率为,求证: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N
(1)求的值;
(2)记直线MN的斜率为,直线AB的斜率为 证明:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆经过点离心率,直线的方程为.
(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com