已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是。
(1)求双曲线的方程;
(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。
(1);(2)的取值范围是
解析试题分析:(1)本题较易,注意利用已知条件建立方程组解得,
即得所求.
(2)从确定三角形的面积表达式入手,建立的不等式
.通过设直线的方程为,建立方程组并整理,建立的不等关系;
由根与系数的关系可知线段的中点坐标满足,,
得到线段的垂直平分线的方程为,
求得此直线与轴,轴的交点坐标分别为,,
从而利用,整理得,,
将上式代入的不等关系式,得到的不等式.
试题解析:(1)设双曲线的方程为,
由题设得解得,
所以双曲线方程为.
(2)设直线的方程为,点的坐标满足方程组,整理得,此方程有两个不等实根,
于是且,
整理得......③
由根与系数的关系可知线段的中点坐标满足,,
从而线段的垂直平分线的方程为,
此直线与轴,轴的交点坐标分别为,,
由题设可得,整理得,,
将上式代入③式得,
整理得,,解得或,
所以的取值范围是
考点:双曲线的标准方程、几何性质,直线与圆锥曲线的位置关系,三角形面积公式.
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆C的方程;
(2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知动直线与椭圆相交于、两点. ①若线段中点的横坐标为,求斜率的值;②若点,求证:为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图示:已知抛物线的焦点为,过点作直线交抛物线于、两点,经过、两点分别作抛物线的切线、,切线与相交于点.
(1)当点在第二象限,且到准线距离为时,求;
(2)证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是,
(1)求双曲线的方程;
(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为3.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点、,当时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2为的菱形的四个顶点.
(1)求椭圆的方程;
(2)过右焦点F2 ,斜率为()的直线与椭圆相交于两点,A为椭圆的右顶点,直线、分别交直线于点、,线段的中点为,记直线的斜率为.求证:为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com