精英家教网 > 高中数学 > 题目详情

已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为
(1)求椭圆C的方程;
(2)设直线经过点(0,1),且与椭圆C交于两点,若,求直线的方程.

(1);(2).

解析试题分析:本题主要考查椭圆的标准方程和几何性质、直线的方程等基础知识,考查用代数法研究圆锥曲线的性质,考查运算求解能力、综合分析和解决问题的能力.第一问,先利用椭圆的焦距、离心率求出基本量,写出椭圆方程;第二问,由于直线经过(0,1)点,所以先设出直线方程,与椭圆联立,消参得到关于x的方程,先设出点坐标,通过方程得到两根之和、两根之积,再由,得出,联立上述表达式得k的值,从而得到直线方程.
试题解析:(1)设椭圆方程为
因为,所以
所求椭圆方程为                          4分
(2)由题得直线的斜率存在,设直线方程为
则由,且
,则由 ..8分

所以消去
解得
所以直线的方程为,即  12分
考点:1.椭圆的标准方程;2.直线方程;3.韦达定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为椭圆的左、右焦点,且点在椭圆上.
(1)求椭圆的方程;
(2)过的直线交椭圆两点,则的内切圆的面积是否存在最大值?
若存在其最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;
(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是常数),且动点轴的距离比到点的距离小.
(1)求动点的轨迹的方程;
(2)(i)已知点,若曲线上存在不同两点满足,求实数的取值范围;
(ii)当时,抛物线上是否存在异于的点,使得经过三点的圆和抛物线在点处有相同的切线,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个顶点到两个焦点的距离分别是7和1.
(1)求椭圆的方程;
(2)若为椭圆的动点,为过且垂直于轴的直线上的点,为椭圆的离心率),求点的轨迹方程,并说明轨迹是什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,已知中心在原点,离心率为的椭圆E的一个焦点为圆的圆心.
⑴求椭圆E的方程;
⑵设P是椭圆E上一点,过P作两条斜率之积为的直线,当直线都与圆相切时,求P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线,求曲线过点的切线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是
(1)求双曲线的方程;
(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围。

查看答案和解析>>

同步练习册答案