设椭圆
:
的左、右焦点分别是
、
,下顶点为
,线段
的中点为
(
为坐标原点),如图.若抛物线
:
与
轴的交点为
,且经过
、
两点.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
为抛物线
上的一动点,过点
作抛物线
的切线交椭圆
于
、
两点,求
面积的最大值.
(Ⅰ)
;(Ⅱ)
的面积的最大值为
.
解析试题分析:(Ⅰ)求椭圆
的方程,本题解题的关键是利用抛物线的方程求出椭圆方程中参数的值,抛物线
:
与
轴的交点为
,且经过
、
两点,求出
、
、
两点点的坐标,即可求出椭圆的半长轴与半焦距,再求出
,就能写出椭圆方程;(Ⅱ)设
,
为抛物线
上的一动点,过点
作抛物线
的切线交椭圆
于
、
两点,求
面积的最大值,利用抛物线线上的点的切线方程与圆联立利用弦长公式与点到直线的距离公式分别求出三角形的底边长度与高,表示出△MPQ的面积利用函数的知识求出最值,设
(
),表示出过点
的抛物线的切线方程,与椭圆的方程联立,利用弦长公式表示出线段
的长度,再求出点
到直线
的距离为
,表示出
面积,由于其是参数
的函数,利用函数的知识求出其最值即可得到,
的面积的最大值.
试题解析:(Ⅰ)由题意可知B(0, 1),则A(0, 2),故b=2. 2分
令y=0得
即
,则F1( 1,0),F2(1,0),故c =1. 4分![]()
所以
.于是椭圆C1的方程为:
. 6分
(Ⅱ)设N(
),由于
知直线PQ的方程为:
. 即
. 7
代入椭圆方程整理得:
,
=
,
,
, 9分
故![]()
. 10分
设点M到直线PQ的距离为d,则
.
所以,
的面积S![]()
![]()
![]()
12分
当
时取到“=”,经检验此时
,满足题意.
综上可知,
的面积的最大值为
. 13分
考点:圆锥曲线的综合,椭圆的标准方程.
科目:高中数学 来源: 题型:解答题
已知点
(
,
是常数),且动点
到
轴的距离比到点
的距离小
.
(1)求动点
的轨迹
的方程;
(2)(i)已知点
,若曲线
上存在不同两点
、
满足
,求实数
的取值范围;
(ii)当
时,抛物线
上是否存在异于
、
的点
,使得经过
、
、
三点的圆和抛物线
在点
处有相同的切线,若存在,求出点
的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点O,焦点在x轴上,离心率为
的椭圆过点![]()
(1)求椭圆的方程;
(2)设不过原点O的直线
与该椭圆交于P,Q两点,满足直线
的斜率依次成等比数列,
求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,点
分别是椭圆C:
的左、右焦点,过点
作
轴的垂线,交椭圆
的上半部分于点
,过点
作
的垂线交直线
于点
.![]()
(1)如果点
的坐标为(4,4),求椭圆
的方程;
(2)试判断直线
与椭圆
的公共点个数,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线
的一个焦点是
,一条渐近线的方程是
。
(1)求双曲线
的方程;
(2)若以
为斜率的直线
与双曲线
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.![]()
(1)求椭圆
的方程;
(2)如图,
、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
,设
的斜率为
,
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的左焦点为
,右焦点为
.![]()
(Ⅰ)设直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求点M的轨迹
的方程;
(Ⅱ)设
为坐标原点,取曲线
上不同于
的点
,以
为直径作圆与
相交另外一点
,求该圆的面积最小时点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com