已知椭圆
:
的左焦点为
,右焦点为
.![]()
(Ⅰ)设直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点P,线段
的垂直平分线交
于点M,求点M的轨迹
的方程;
(Ⅱ)设
为坐标原点,取曲线
上不同于
的点
,以
为直径作圆与
相交另外一点
,求该圆的面积最小时点
的坐标.
科目:高中数学 来源: 题型:解答题
设椭圆
:
的左、右焦点分别是
、
,下顶点为
,线段
的中点为
(
为坐标原点),如图.若抛物线
:
与
轴的交点为
,且经过
、
两点.![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
为抛物线
上的一动点,过点
作抛物线
的切线交椭圆
于
、
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,
)。
(I)求椭圆C的方程;
(II)过P点分别以
为斜率的直线分别交椭圆C于A,B,M,N,求证:
使得![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆
,圆
,动圆
与圆
外切并且与圆
内切,圆心
的轨迹为曲线
。
(Ⅰ)求
的方程;
(Ⅱ)
是与圆
,圆
都相切的一条直线,
与曲线
交于
,
两点,当圆
的半径最长是,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点
和上下两个顶点
是一个边长为2且∠F1B1F2为
的菱形的四个顶点.
(1)求椭圆
的方程;
(2)过右焦点F2 ,斜率为
(
)的直线
与椭圆
相交于
两点,A为椭圆的右顶点,直线
、
分别交直线
于点
、
,线段
的中点为
,记直线
的斜率为
.求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
的离心率等于
,点P
在椭圆上。
(1)求椭圆
的方程;
(2)设椭圆
的左右顶点分别为
,过点
的动直线
与椭圆
相交于
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com