精英家教网 > 高中数学 > 题目详情

已知动点到定点的距离之和为.
(Ⅰ)求动点轨迹的方程;
(Ⅱ)设,过点作直线,交椭圆异于两点,直线的斜率分别为,证明:为定值.

(Ⅰ);(Ⅱ)证明过程详见解析.

解析试题分析:本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.
试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.
,得.故曲线的方程为.        5分
(Ⅱ)当直线的斜率存在时,设其方程为
,得.     7分

从而.                                                                                 11分
当直线的斜率不存在时,得

综上,恒有.                                              12分
考点:1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;
(2)如图,是椭圆的顶点,是椭圆上除顶点外的任意点,直线轴于点,直线于点,设的斜率为的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左焦点为,右焦点为

(Ⅰ)设直线过点且垂直于椭圆的长轴,动直线垂直于点P,线段的垂直平分线交于点M,求点M的轨迹的方程;
(Ⅱ)设为坐标原点,取曲线上不同于的点,以为直径作圆与相交另外一点,求该圆的面积最小时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)右顶点与右焦点的距离为,短轴长为.
(I)求椭圆的方程;  
(II)过左焦点的直线与椭圆分别交于两点,若三角形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为,过任作直线(轴不平行)交抛物线分别于两点,点关于轴对称点为

(1)求证:直线轴交点必为定点;
(2)过分别作抛物线的切线,两条切线交于,求的最小值,并求当取最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆经过点离心率,直线的方程为.

(Ⅰ)求椭圆的方程;
(Ⅱ)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得若存在求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。

查看答案和解析>>

同步练习册答案