已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.
(1)求动点P的轨迹方程;
(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆:的左、右焦点分别是、,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过、两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于、两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设双曲线以椭圆的两个焦点为焦点,且双曲线的一条渐近线是,
(1)求双曲线的方程;
(2)若直线与双曲线交于不同两点,且都在以为圆心的圆上,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点F在轴上,离心率,点在椭圆C上.
(1)求椭圆的标准方程;
(2)若斜率为的直线交椭圆与、两点,且、、成等差数列,点M(1,1),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为3.
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点、,当时,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以点F1(-1,0),F2(1,0)为焦点的椭圆C经过点(1,)。
(I)求椭圆C的方程;
(II)过P点分别以为斜率的直线分别交椭圆C于A,B,M,N,求证: 使得
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线。
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长是,求。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com