四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分;
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。
(Ⅰ)详见解析;(Ⅱ)y=2x
解析试题分析:(Ⅰ)依题意设出A、B、C、D四点的坐标,注意到AC的斜率为0,只需证AB、AD的斜率之和为0即可;(Ⅱ)四边形ABCD可以AC为底分成两个三角形求出面积,解出得到的方程即可.
试题解析:(Ⅰ)设A(x0,),B(x1,),C(-x0,),D(x2,).
对y=x2求导,得y¢=2x,则抛物线在点C处的切线斜率为-2x0.
直线BD的斜率k==x1+x2,
依题意,有x1+x2=-2x0.
记直线AB,AD的斜率分别为k1,k2,与BD的斜率求法同理,得
k1+k2=(x0+x1)+(x0+x2)=2x0+(x1+x2)=0,
所以∠CAB=∠CAD,即AC平分∠BAD.
(Ⅱ)由题设,x0=-1,x1+x2=2,k=2.四边形ABCD的面积
S=|AC|·=|AC|·|x2+x1|·|x2-x1|
=×2×2×|2-2x1|=4|1-x1|,
由已知,4|1-x1|=4,得x1=0,或x1=2.
所以点B和D的坐标为(0,0)和(2,4),
故直线BD的方程为y=2x.
考点:1、抛物线及切线;2、直线的斜率及应用.
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率等于,点P在椭圆上。
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,直线的参数方程为为参数,).
(Ⅰ)化曲线的极坐标方程为直角坐标方程;
(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,,为椭圆的两个焦点,点在椭圆上,且的周长为。
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),求证:直线与圆相切.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的离心率,是其左右焦点,点是直线(其中)上一点,且直线的倾斜角为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 是椭圆上两点,满足,求(为坐标原点)面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知,求的值;
(3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标;
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com