精英家教网 > 高中数学 > 题目详情

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,求的值;
(3)直线交椭圆两不同点,轴的射影分别为,若点满足,证明:点在椭圆上.

(1) ,;(2)-1;(3)详见解析.

解析试题分析:(1)根据抛物线的焦点坐标满足圆的方程确定等量关系,求解抛物线方程;根据椭圆的焦点和右定点也在圆上,确定椭圆方程;(2)利用已知的向量关系式进行坐标转化求出,然后通过直线与抛物线方程联立,借助韦达定理进行化简并求值;(3)借助向量问题坐标化和点在椭圆上,明确点S的坐标,进而证明其在椭圆上.
试题解析:(1)由抛物线的焦点在圆上得:
∴抛物线 .                          2分
同理由椭圆的上、下焦点及左、右顶点均在
上可解得:
得椭圆.                                            4分
(2)设直线的方程为,则
联立方程组,消去得:
                           5分
得:
整理得:
.                8分
(3)设,则
;① ;②
;③                                                11分
由①+②+③得
满足椭圆的方程,命题得证.               13分
考点:1.抛物线和椭圆的方程;(2)直线与抛物线的位置关系;(3)向量的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的上、下顶点分别为,点在椭圆上,且异于点,直线与直线分别交于点

(Ⅰ)设直线的斜率分别为,求证:为定值;
(Ⅱ)求线段的长的最小值;
(Ⅲ)当点运动时,以为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四边形ABCD的四个顶点都在抛物线上,A,C关于轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
(Ⅱ)若点A坐标为,四边形ABCD的面积为4,求直线BD的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,左焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的两点,且线段的中点在圆 上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.
(I)求椭圆的方程;
(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量共线,
线,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,设抛物线的焦点为,且其准线与轴交于,以为焦点,离心率的椭圆与抛物线轴上方的一个交点为P.

(1)当时,求椭圆的方程;
(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆(a>b>0)抛物线,从每条曲线上取两个点,将其坐标记录于下表中:



4

1

2
4

2
(1)求的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若,
(i) 求的最值.
(ii) 求四边形ABCD的面积;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线相交于不同的两点M、N.当时,求m的取值范围.

查看答案和解析>>

同步练习册答案