已知抛物线
的焦点
以及椭圆
的上、下焦点及左、右顶点均在圆
上.
(1)求抛物线
和椭圆
的标准方程;
(2)过点
的直线交抛物线
于
两不同点,交
轴于点
,已知
,求
的值;
(3)直线
交椭圆
于
两不同点,
在
轴的射影分别为
,
,若点
满足
,证明:点
在椭圆
上.
(1)
,
;(2)-1;(3)详见解析.
解析试题分析:(1)根据抛物线的焦点坐标满足圆的方程确定等量关系,求解抛物线方程;根据椭圆的焦点和右定点也在圆上,确定椭圆方程;(2)利用已知的向量关系式进行坐标转化求出
,然后通过直线与抛物线方程联立,借助韦达定理进行化简
并求值;(3)借助向量问题坐标化和点在椭圆上,明确点S的坐标,进而证明其在椭圆
上.
试题解析:(1)由抛物线
的焦点
在圆
上得:
,![]()
∴抛物线
. 2分
同理由椭圆
的上、下焦点
及左、右顶点
均在
上可解得:
.
得椭圆
. 4分
(2)设直线
的方程为
,则
.
联立方程组
,消去
得:![]()
且
5分
由
得:![]()
整理得:![]()
. 8分
(3)设
,则![]()
由
得
;①
;②
;③ 11分
由①+②+③得![]()
∴
满足椭圆
的方程,命题得证. 13分
考点:1.抛物线和椭圆的方程;(2)直线与抛物线的位置关系;(3)向量的坐标运算.
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的上、下顶点分别为
,点
在椭圆上,且异于点
,直线
与直线
分别交于点
,![]()
(Ⅰ)设直线
的斜率分别为
,求证:
为定值;
(Ⅱ)求线段
的长的最小值;
(Ⅲ)当点
运动时,以
为直径的圆是否经过某定点?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
四边形ABCD的四个顶点都在抛物线
上,A,C关于
轴对称,BD平行于抛物线在点C处的切线。
(Ⅰ)证明:AC平分
;
(Ⅱ)若点A坐标为
,四边形ABCD的面积为4,求直线BD的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的两个焦点分别为
,且
,点
在椭圆上,且
的周长为6.
(I)求椭圆
的方程;
(II)若点
的坐标为
,不过原点
的直线与椭圆
相交于
两点,设线段
的中点为
,点
到直线的距离为
,且
三点共线.求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
、
是椭圆![]()
的左、右焦点,且离心率
,点
为椭圆上的一个动点,
的内切圆面积的最大值为
.
(1) 求椭圆的方程;
(2) 若
是椭圆上不重合的四个点,满足向量
与
共线,
与
共
线,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,设抛物线
的焦点为
,且其准线与
轴交于
,以
,
为焦点,离心率
的椭圆
与抛物线
在
轴上方的一个交点为P.![]()
(1)当
时,求椭圆
的方程;
(2)是否存在实数
,使得
的三条边的边长是连续的自然数?若存在,求出这样的实数
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
(a>b>0)抛物线![]()
,从每条曲线上取两个点,将其坐标记录于下表中:![]()
| 4 | 1 | |||
| 2 | 4 | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线
相交于不同的两点M、N.当
时,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com