已知、是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量与共线,与共
线,且,求的取值范围.
(1);(2)
解析试题分析:本小题主要通过对直线与圆锥曲线中椭圆的综合应用的考查,具体涉及到椭圆方程的求法、直线与圆锥曲线的相关知识与圆锥曲线的综合知识,提示考生对圆锥曲线的综合题加以重视,本题主要考查考生的推理论证能力,运算求解能力、化归与转化以及数形结合的数学思想.(1)利用方程思想和几何性质,得到含有的两个等量关系,进而利用待定系数法求解椭圆方程;(2)通过直线与方程联立,借助韦达定理和弦长公式将进行表示为含有的函数关系式,利用换元法和二次函数求值域的思路寻求范围.
试题解析:(1)由几何性质可知:当内切圆面积取最大值时,
即取最大值,且.
由得
又为定值,,
综上得;
又由,可得,即,
经计算得,,,
故椭圆方程为. (5分)
(2) ①当直线与中有一条直线垂直于轴时,.
②当直线斜率存在但不为0时,设的方程为:,由消去可得,代入弦长公式得: ,
同理由消去可得,
代入弦长公式得:,
所以
令,则,所以,
由①②可知,的取值范围是. (12分)
考点:(1)椭圆方程;(2)直线与椭圆的位置关系;(3)函数的值域.
科目:高中数学 来源: 题型:解答题
已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.
(1)求椭圆的方程;
(2)若圆与轴有两个交点,求点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,,为椭圆的两个焦点,点在椭圆上,且的周长为。
(Ⅰ)求椭圆的方程
(Ⅱ)设直线与椭圆相交于、两点,若(为坐标原点),求证:直线与圆相切.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.
(I)求椭圆C的方程;
(II)若直线y =kx交椭圆C于A,B两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB为等边三角形,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知,求的值;
(3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知焦点在轴上的椭圆和双曲线的离心率互为倒数,它们在第一象限交点的坐标为,设直线(其中为整数).
(1)试求椭圆和双曲线的标准方程;
(2)若直线与椭圆交于不同两点,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点,,动点到定点距离与到定点的距离的比值是.
(Ⅰ)求动点的轨迹方程,并说明方程表示的曲线;
(Ⅱ)当时,记动点的轨迹为曲线.
①若是圆上任意一点,过作曲线的切线,切点是,求的取值范围;
②已知,是曲线上不同的两点,对于定点,有.试问无论,两点的位置怎样,直线能恒和一个定圆相切吗?若能,求出这个定圆的方程;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的离心率为,是其左右顶点,是椭圆上位于轴两侧的点(点在轴上方),且四边形面积的最大值为4.
(1)求椭圆方程;
(2)设直线的斜率分别为,若,设△与△的面积分别为,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com