直线![]()
与椭圆
相交于
,
两点,
为坐标原点.
(Ⅰ)当点
的坐标为
,且四边形
为菱形时,求
的长;
(Ⅱ)当点
在
上且不是
的顶点时,证明:四边形
不可能为菱形.
科目:高中数学 来源: 题型:解答题
已知
、
是椭圆![]()
的左、右焦点,且离心率
,点
为椭圆上的一个动点,
的内切圆面积的最大值为
.
(1) 求椭圆的方程;
(2) 若
是椭圆上不重合的四个点,满足向量
与
共线,
与
共
线,且
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆
的方程和焦点坐标.
(2)过点
的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
的顶点为原点,其焦点
到直线
的距离为
.设
为直线
上的点,过点
作抛物线
的两条切线
,其中
为切点.
(1) 求抛物线
的方程;
(2) 当点
为直线
上的定点时,求直线
的方程;
(3) 当点
在直线
上移动时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线
的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线
相交于不同的两点M、N.当
时,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直接坐标系
中,直线
的方程为
,曲线
的参数方程为
(
为参数).
(I)已知在极坐标(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为(4,
),判断点
与直线
的位置关系;
(II)设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,离心率为
,短轴长为4
.![]()
(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为
,直线PB的斜率为
,判断
+
的值是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆
的左、右焦点,
是椭圆上位于第一象限内的一点,点
也在椭圆上,且满足
(
是坐标原点),
,若椭圆的离心率为
.
(1)若
的面积等于
,求椭圆的方程;
(2)设直线
与(1)中的椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设
,
、
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,求直线
的斜率的取值范围;
(3)在(2)的条件下,证明直线
与
轴相交于定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com