已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线相交于不同的两点M、N.当时,求m的取值范围.
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线于两不同点,交轴于点,已知,求的值;
(3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标;
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的焦点在轴上
(Ⅰ)若椭圆的焦距为1,求椭圆的方程;
(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在轴上,且过点.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线:上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线的方程;
(Ⅱ)设直线与抛物线交于不同两点,若满足,证明直线恒过定点,并求出定点的坐标.
(Ⅲ)试把问题(Ⅱ)的结论推广到任意抛物线:中,请写出结论,不用证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com