精英家教网 > 高中数学 > 题目详情

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.

(1)
(2)

解析试题分析:(1)依题意,设椭圆的方程为.
构成等差数列,
, .
,.
椭圆的方程为   
(2) 将直线的方程代入椭圆的方程中,
 
由直线与椭圆仅有一个公共点知,,

化简得: 
,
(法一)当时,设直线的倾斜角为,
,
,      
,时,,,.
时,四边形是矩形, 
所以四边形面积的最大值为 
(法二)


四边形的面积,                        
                                                   
当且仅当时,,故
所以四边形的面积的最大值为 
考点:直线与椭圆的位置关系
点评:主要是考查了椭圆方程,以及直线与椭圆的位置关系的运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,设抛物线的焦点为,且其准线与轴交于,以为焦点,离心率的椭圆与抛物线轴上方的一个交点为P.

(1)当时,求椭圆的方程;
(2)是否存在实数,使得的三条边的边长是连续的自然数?若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为
(Ⅰ)求椭圆的方程;
(Ⅱ)点是椭圆上除长轴端点外的任一点,连接,设的角平分线的长轴于点,求的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点作斜率为的直线,使与椭圆有且只有一个公共点,设直线的斜率分别为。若,试证明为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为A(0,-1),焦点在x轴上.若右焦点到直线的距离为3.
(1)求椭圆的方程;
(2)设椭圆与直线相交于不同的两点M、N.当时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为,焦点在轴上,中心在原点.若右焦点到直线的距离为3.    
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点.当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.

(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为,直线PB的斜率为,判断+的值是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为的中垂线与轴和轴分别交于两点.

(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△为原点)的面积为.试问:是否存在直线,使得?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,设点),直线:,点在直线上移动,是线段轴的交点, 过分别作直线,使 .

(1)求动点的轨迹的方程;
(2)在直线上任取一点做曲线的两条切线,设切点为,求证:直线恒过一定点;
(3)对(2)求证:当直线的斜率存在时,直线的斜率的倒数成等差数列.

查看答案和解析>>

同步练习册答案