如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为,的中垂线与轴和轴分别交于两点.
(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△(为原点)的面积为.试问:是否存在直线,使得?说明理由.
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标;
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线:上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线的方程;
(Ⅱ)设直线与抛物线交于不同两点,若满足,证明直线恒过定点,并求出定点的坐标.
(Ⅲ)试把问题(Ⅱ)的结论推广到任意抛物线:中,请写出结论,不用证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的平面直角坐标系,求抛物线方程.现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.
(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.
试问:是否存在直线AB,使得S1=S2?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com