精英家教网 > 高中数学 > 题目详情

如图,已知椭圆的左焦点为,过点的直线交椭圆于两点,线段的中点为的中垂线与轴和轴分别交于两点.

(1)若点的横坐标为,求直线的斜率;
(2)记△的面积为,△为原点)的面积为.试问:是否存在直线,使得?说明理由.

(1)(2)不存在直线,使得

解析试题分析:(Ⅰ)解:依题意,直线的斜率存在,设其方程为
将其代入,整理得
,所以 .     3分
故点的横坐标为.依题意,得
解得 .          5分
(Ⅱ)解:假设存在直线,使得 ,显然直线不能与轴垂直.

由(Ⅰ)可得 .               6分
因为 ,所以
解得 , 即 .        8分
因为 △∽△,所以
所以 ,     10分
整理得
因为此方程无解,所以不存在直线,使得 .        12分
考点:直线与椭圆相交的位置关系
点评:直线与椭圆相交时常联立方程借助于方程根与系数的关系整理化简,此类题目计算量较大要求学生具有较高的数据处理能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.
(1)求点T的横坐标
(2)若以F1,F2为焦点的椭圆C过点.
①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.

(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线:上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线的方程;
(Ⅱ)设直线与抛物线交于不同两点,若满足,证明直线恒过定点,并求出定点的坐标.
(Ⅲ)试把问题(Ⅱ)的结论推广到任意抛物线:中,请写出结论,不用证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的平面直角坐标系,求抛物线方程.现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,直线为平面上的动点,过点的垂线,垂足为点,且
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2
试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

同步练习册答案