已知椭圆
:
的离心率为
,
分别为椭圆
的左、右焦点,若椭圆
的焦距为2.
⑴求椭圆
的方程;
⑵设
为椭圆上任意一点,以
为圆心,
为半径作圆
,当圆
与椭圆的右准线
有公共点时,求△
面积的最大值.
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上.若椭圆上的点
到焦点
、
的距离之和等于4.
(1)写出椭圆
的方程和焦点坐标.
(2)过点
的直线与椭圆交于两点
、
,当
的面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C的中心在原点,焦点在x轴上,离心率为
,短轴长为4
.![]()
(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为
.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为
,直线PB的斜率为
,判断
+
的值是否为常数,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
是椭圆
的左、右焦点,
是椭圆上位于第一象限内的一点,点
也在椭圆上,且满足
(
是坐标原点),
,若椭圆的离心率为
.
(1)若
的面积等于
,求椭圆的方程;
(2)设直线
与(1)中的椭圆相交于不同的两点
,已知点
的坐标为(
),点
在线段
的垂直平分线上,且
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆
的左焦点为
,过点
的直线交椭圆于
两点,线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点.![]()
(1)若点
的横坐标为
,求直线
的斜率;
(2)记△
的面积为
,△
(
为原点)的面积为
.试问:是否存在直线
,使得
?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
的离心率为
,两焦点分别为
,点M是椭圆C上一点,
的周长为16,设线段MO(O为坐标原点)与圆
交于点N,且线段MN长度的最小值为
.
(1)求椭圆C以及圆O的方程;
(2)当点
在椭圆C上运动时,判断直线
与圆O的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆C的方程;
(2)设
,
、
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,求直线
的斜率的取值范围;
(3)在(2)的条件下,证明直线
与
轴相交于定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
曲线
都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线
的短轴,并且是曲线
的长轴 . 直线
与曲线
交于A,D两点(A在D的左侧),与曲线
交于B,C两点(B在C的左侧).
(1)当
=
,
时,求椭圆
的方程;
(2)若
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com