精英家教网 > 高中数学 > 题目详情

曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=时,求椭圆的方程;
(2)若,求的值.

(1)C1 ,C2的方程分别为;(2) .

解析试题分析:(1)解:设曲线C1的方程为,C2的方程为)…2分
∵C1 ,C2的离心率相同,∴,∴,               3分
代入曲线方程,则 .
=时,A,C.……………5分
又∵,.由,且,解得      6分
∴C1 ,C2的方程分别为.        7分
(2)令代入曲线方程,,得  ,得   9分
由于,所以(-,m),(,m) .        10分
由于是曲线的短轴,所以.
∵OC⊥AN,).                 11分
=(,m),=(,-1-m),
代入()并整理得2m2+m-1=0,                     12分
(舍负) ,∴ .          14分
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,平面向量的坐标运算。
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用向量垂直,数量积为0,确定得到m的方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为分别为椭圆的左、右焦点,若椭圆的焦距为2.
⑴求椭圆的方程;
⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是椭圆的左焦点,直线方程为,直线轴交于点,分别为椭圆的左右顶点,已知,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点且斜率为的直线交椭圆于两点,求三角形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.

(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2
试问:是否存在直线AB,使得S1=S2?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:的离心率为,右焦点到直线 的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线 与椭圆C交于A、B两点,且线段AB中点恰好在直线上,求△OAB的面积S的最大值.(其中O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线,使得的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的顶点为,焦点为.

(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在极坐标系中,已知圆经过点,圆心为直线与极轴的交点,求圆的极坐标方程.

查看答案和解析>>

同步练习册答案