已知椭圆
:
的离心率等于
,点![]()
在椭圆上.
(I)求椭圆
的方程;
(Ⅱ)设椭圆
的左右顶点分别为
,
,过点
的动直线
与椭圆
相交于
,
两点,是否存在定直线
:
,使得
与
的交点
总在直线
上?若存在,求出一个满足条件的
值;若不存在,说明理由。
(I)
(Ⅱ) 存在定直线
:
,使得
与
的交点
总在直线
上,
的值是
.
解析试题分析:(1)由
,
又点
在椭圆上,
,所以椭圆方程:
;
(2)当
垂直
轴时,
,则
的方程是:
,
的方程是:
,交点
的坐标是:
,猜测:存在常数
,
即直线
的方程是:
使得
与
的交点
总在直线
上,
证明:设
的方程是
,点
,![]()
将
的方程代入椭圆
的方程得到:
,
即:
,
从而:
,
因为:
,![]()
共线,所以:
,
,
又
,
要证明
共线,即要证明
,
即证明:
,即:
,
即:
因为:
成立,
所以点
在直线
上.综上:存在定直线
:
,使得
与
的交点
总在直线
上,
的值是
.
考点:直线与圆锥曲线的综合问题;椭圆的标准方程.
点评:本题考查椭圆方程的求法,考查满足条件的方程是否存在,综合性强,难度大,有一定的探索性,解题时要认真审题,仔细解答,注意等价转化思想的合理运用
科目:高中数学 来源: 题型:解答题
设
是椭圆
上的两点,已知向量![]()
,若
且椭圆的离心率
,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
曲线
都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线
的短轴,并且是曲线
的长轴 . 直线
与曲线
交于A,D两点(A在D的左侧),与曲线
交于B,C两点(B在C的左侧).
(1)当
=
,
时,求椭圆
的方程;
(2)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,直线
的参数方程为
(t为参数),它与曲线
交于A、B两点。
(1)求
的长;
(2)在以
为极点,
轴的正半轴为极轴建立极坐标系,设点P的极坐标为
,求点P到线段AB中点M的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(其中
为坐标原点),求整数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:![]()
的短轴长等于焦距,椭圆C上的点到右焦点
的最短距离为
.
(1)求椭圆C的方程;
(2)过点
且斜率为
(
>0)的直线
与C交于
两点,
是点
关于
轴的对称点,证明:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0),则称以原点为圆心,r=
的圆为椭圆C的“知己圆”。
(Ⅰ)若椭圆过点(0,1),离心率e=
;求椭圆C方程及其“知己圆”的方程;
(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;
(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)设椭圆
:
与双曲线
:
有相同的焦点
,
是椭圆
与双曲线
的公共点,且
的周长为
,求椭圆
的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆
”的方程为
.设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;
(3)由抛物线弧
:
(
)与第(1)小题椭圆弧
:
(
)所合成的封闭曲线为“盾圆
”.设过点
的直线与“盾圆
”交于
两点,
,
且
(
),试用
表示
;并求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com