已知椭圆C:的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(1)求椭圆C的方程;
(2)过点且斜率为(>0)的直线与C交于两点,是点关于轴的对称点,证明:三点共线.
科目:高中数学 来源: 题型:解答题
已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.
(1)求动点的轨迹曲线的方程;
(2)设动直线与曲线相切于点,且与直线相交于点,试探究:在坐标平面内是否存在一个定点,使得以为直径的圆恒过此定点?若存在,求出定点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆的左焦点为F,过点F的直线交椭圆于A、B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D、E两点.
(Ⅰ)若点G的横坐标为,求直线AB的斜率;
(Ⅱ)记△GFD的面积为S1,△OED(O为原点)的面积为S2.
试问:是否存在直线AB,使得S1=S2?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的离心率等于,点在椭圆上.
(I)求椭圆的方程;
(Ⅱ)设椭圆的左右顶点分别为,,过点的动直线与椭圆相交于,两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,曲线的参数方程为(为参数)。
若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数)
(1)当时,曲线与曲线有两个交点.求的值;
(2)若曲线与曲线只有一个公共点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的顶点为,焦点为,.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
中心在坐标原点,焦点在轴上的椭圆的离心率为,且经过点。若分别过椭圆的左右焦点、的动直线、相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率、、、满足.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得为定值.若存在,求出M、N点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com