在直角坐标系
中,曲线
的参数方程为
(
为参数)。
若以直角坐标系的原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(其中
为常数)
(1)当
时,曲线
与曲线
有两个交点
.求
的值;
(2)若曲线
与曲线
只有一个公共点,求
的取值范围.
科目:高中数学 来源: 题型:解答题
如图,椭圆
的左焦点为
,过点
的直线交椭圆于
,
两点.当直线
经过椭圆的一个顶点时,其倾斜角恰为
.![]()
(Ⅰ)求该椭圆的离心率;
(Ⅱ)设线段
的中点为
,
的中垂线与
轴和
轴分别交于
两点,
记△
的面积为
,△
(
为原点)的面积为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,直线
的参数方程为
(t为参数),它与曲线
交于A、B两点。
(1)求
的长;
(2)在以
为极点,
轴的正半轴为极轴建立极坐标系,设点P的极坐标为
,求点P到线段AB中点M的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左顶点
,过右焦点
且垂直于长轴的弦长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线
与椭圆交于点
,与
轴交于点
,过原点与
平行的直线与椭圆交于点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:![]()
的短轴长等于焦距,椭圆C上的点到右焦点
的最短距离为
.
(1)求椭圆C的方程;
(2)过点
且斜率为
(
>0)的直线
与C交于
两点,
是点
关于
轴的对称点,证明:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=kx+2(k为常数)过椭圆
+
=1(a>b>0)的上顶点B和左焦点F,直线l被圆x2+y2=4截得的弦长为d.
(1)若d=2
,求k的值;
(2)若d≥
,求椭圆离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的一个焦点为
且过点
.![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交
轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.
证明:线段OT的长为定值,并求出该定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com