精英家教网 > 高中数学 > 题目详情


已知椭圆:的一个焦点为且过点.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1A2P是椭圆上异于A1A2的任一点,直线PA1PA2分别交轴于点NM,若直线OT与过点MN的圆G相切,切点为T
证明:线段OT的长为定值,并求出该定值.

(Ⅰ).(Ⅱ)线段的长为定值.

解析试题分析:(Ⅰ) 由题意得,解得
所以椭圆的方程为.
(Ⅱ)由(Ⅰ)可知,设,其中
直线:,令,得
直线:,令,得.
设圆的圆心为,半径为



,所以,所以
所以,即线段的长为定值.
考点:本题考查了椭圆方程的求法及直线与椭圆的位置关系
点评::从近几年课标地区的高考命题来看,解析几何综合题主要考查直线和圆锥曲线的位置关系以及范围、最值、定点、定值、存在性等问题,直线与多种曲线的位置关系的综合问题将会逐步成为今后命题的热点,尤其是把直线和圆的位置关系同本部分知识的结合,将逐步成为今后命题的一种趋势

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线的参数方程为为参数)。
若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(其中为常数)
(1)当时,曲线与曲线有两个交点.求的值;
(2)若曲线与曲线只有一个公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过抛物线的焦点作倾斜角为的直线交抛物线于两点,过点作抛物线的切线轴于点,过点作切线的垂线交轴于点

(1) 若,求此抛物线与线段以及线段所围成的封闭图形的面积。
(2) 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知抛物线和椭圆都经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知过抛物线的焦点,斜率为的直线交抛物线于)两点,且
(1)求该抛物线的方程;
(2)为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

双曲线=1(a>0,b>0)的离心率为2,坐标原点到直线AB的距离为,其中A(0,-b),B(a,0).
(1)求双曲线的标准方程;
(2)设F是双曲线的右焦点,直线l过点F且与双曲线的右支交于不同的两点P、Q,点M为线段PQ的中点.若点M在直线x=-2上的射影为N,满足·=0,且||=10,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线与椭圆有相同的焦点,点分别是椭圆的右、右顶点,若椭圆经过点
(1)求椭圆的方程;
(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;
(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线与椭圆交于两点,已知
,若且椭圆的离心率,又椭圆经过点
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)判断曲线的切线能否与曲线相切?并说明理由;
(Ⅱ)若的最大值;
(Ⅲ)若,求证:

查看答案和解析>>

同步练习册答案