已知抛物线和椭圆都经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,直线的参数方程为(t为参数),它与曲线交于A、B两点。
(1)求的长;
(2)在以为极点,轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:y=kx+2(k为常数)过椭圆+=1(a>b>0)的上顶点B和左焦点F,直线l被圆x2+y2=4截得的弦长为d.
(1)若d=2,求k的值;
(2)若d≥,求椭圆离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两定点,,动点满足,由点向轴作垂线段,垂足为,点满足,点的轨迹为.
(1)求曲线的方程;
(2)过点作直线与曲线交于,两点,点满足(为原点),求四边形面积的最大值,并求此时的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平面内一动点到点的距离与点到轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)设椭圆:与双曲线:有相同的焦点,是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值;
(3)由抛物线弧:()与第(1)小题椭圆弧:()所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,,且(),试用表示;并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:的一个焦点为且过点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.
证明:线段OT的长为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆:,左、右两个焦点分别为、,上顶点,为正三角形且周长为6.
(1)求椭圆的标准方程及离心率;
(2)为坐标原点,是直线上的一个动点,求的最小值,并求出此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为,一个焦点和抛物线的焦点重合,过直线上一点引椭圆的两条切线,切点分别是.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点处的椭圆的切线方程是. 求证:直线恒过定点;并出求定点的坐标.
(Ⅲ)是否存在实数,使得恒成立?(点为直线恒过的定点)若存在,求出的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com