已知平面内一动点到点的距离与点到轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
科目:高中数学 来源: 题型:解答题
已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆:的离心率为,点、,原点到直线的距离为.
(1)求椭圆的方程;
(2)设点,点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过抛物线的焦点作倾斜角为的直线交抛物线于、两点,过点作抛物线的切线交轴于点,过点作切线的垂线交轴于点。
(1) 若,求此抛物线与线段以及线段所围成的封闭图形的面积。
(2) 求证:;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,抛物线的顶点为坐标原点,焦点在轴上,准线与圆相切.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知直线和抛物线交于点,命题P:“若直线过定点,则”,请判断命题P的真假,并证明。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线和椭圆都经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴,抛物线的顶点为坐标原点.
(1)求这两条曲线的方程;
(2)对于抛物线上任意一点,点都满足,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线与椭圆有相同的焦点,点、分别是椭圆的右、右顶点,若椭圆经过点.
(1)求椭圆的方程;
(2)已知是椭圆的右焦点,以为直径的圆记为,过点引圆的切线,求此切线的方程;
(3)设为直线上的点,是圆上的任意一点,是否存在定点,使得?若存在,求出定点的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com