精英家教网 > 高中数学 > 题目详情


已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。

(1) 
(2)在y轴上存在定点M,使得以AB为直径的圆恒过这个点,
点M的坐标为(0,1)。

解析试题分析:(1)设

因此所求椭圆的方程为:    5分
(2)动直线l的方程为:


     10分
由假设得对于任意的恒成立,

因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点,
点M的坐标为(0,1)。   13分
(以上答案仅供参考,其它解法酌情赋分)
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,平面向量的坐标运算。
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用向量垂直,数量积为0,确定得到m的方程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点,
(1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,设点是椭圆上任一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别求适合下列条件圆锥曲线的标准方程:
(1)焦点为且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线,直线截抛物线C所得弦长为.
(1)求抛物线的方程;
(2)已知是抛物线上异于原点的两个动点,记试求当取得最小值时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,直线的参数方程为(t为参数),它与曲线交于A、B两点。
(1)求的长;
(2)在以为极点,轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

平面内动点到定点的距离比它到轴的距离大
(1)求动点的轨迹的方程;
(2)过的直线相交于两点,若,求弦的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点到点的距离与点轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点与轨迹相交于点,求的最小值.

查看答案和解析>>

同步练习册答案