精英家教网 > 高中数学 > 题目详情

已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点,
(1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值

(1)(2)16

解析试题分析:(1)椭圆的右焦点为即为抛物线的焦点,    2分
得抛物线的标准方程为    5分
(2)当直线AB的斜率不存在时,直线方程为,此时,⊿ABO的面积=    7分
当直线AB的斜率存在时,设AB的方程为)联立

消去,有,  9分
设A()B(
                 11分
=
综上所述,面积最小值为16   13分
考点:椭圆抛物线方程性质及直线与圆锥曲线的位置关系
点评:抛物线焦点为,椭圆焦点为其中
当直线与圆锥曲线相交时,常联立方程借助于方程根与系数的关系求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知直线与抛物线相切于点)且与轴交于点为坐标原点,定点B的坐标为.

(1)若动点满足|=,求点的轨迹.
(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点,试求面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=
(3)记
(A、B、是(2)中的点),,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求中心在坐标原点,对称轴为坐标轴且经过点,一条渐近线的倾斜角为的双曲线方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米建立适当的平面直角坐标系,求抛物线方程.现将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设是圆上的动点,点轴上投影,上一点,且.当在圆上运动时,点的轨迹为曲线. 过点且倾斜角为的直线交曲线两点.
(1)求曲线的方程;
(2)若点F是曲线的右焦点且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆E:)离心率为,上顶点M,右顶点N,直线MN与圆相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点.
(1)求E的方程;
(2)若点G(m,0)且| GA|=| GB|,,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知椭圆C:其左、右焦点分别为F1、F2,点P是坐标平面内一点,且|OP|=(O为坐标原点)。
(1)求椭圆C的方程;
(2)过点l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点:若存在,求出M的坐标;若不存在,说明理由。

查看答案和解析>>

同步练习册答案