精英家教网 > 高中数学 > 题目详情

已知点是直角坐标平面内的动点,点到直线(是正常数)的距离为,到点的距离为,且1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线的垂线,对应的垂足分别为,求证=
(3)记
(A、B、是(2)中的点),,求的值.

(1)
(2)借助于联立方程组,和韦达定理来借助于坐标来证明垂直。
(3)

解析试题分析:解 (1) 设动点为,  
依据题意,有,化简得
因此,动点P所在曲线C的方程是:.          4分
由题意可知,当过点F的直线的斜率为0时,不合题意,
故可设直线
联立方程组,可化为
则点的坐标满足
,可得点
于是,
因此.                     9分
(3)依据(2)可算出

. 
所以,即为所求.                                     13分
考点:直线与抛物线的位置关系
点评:主要是考查了直线与抛物线位置关系的研究,以及设而不求的思想运用,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线,过轴上一点的直线与抛物线交于点两点。
证明,存在唯一一点,使得为常数,并确定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点为原点,其焦点到直线:的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(Ⅰ) 求抛物线的方程;
(Ⅱ) 当点为直线上的定点时,求直线的方程;
(Ⅲ) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的一个顶点为,焦点在轴上,中心在原点.若右焦点到直线的距离为3.    
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点.当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的右焦点在圆上,直线交椭圆于两点.
(1)求椭圆的方程;
(2)若(为坐标原点),求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设直线是曲线的一条切线,
(Ⅰ)求切点坐标及的值;
(Ⅱ)当时,存在,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点,
(1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,设点是椭圆上任一点,求的取值范围.

查看答案和解析>>

同步练习册答案