已知椭圆的一个顶点为
,焦点在
轴上,中心在原点.若右焦点到直线
的距离为3.
(1)求椭圆的标准方程;
(2)设直线
与椭圆相交于不同的两点
.当
时,求
的取值范围.
科目:高中数学 来源: 题型:解答题
年
月
日
时
分
秒“嫦娥二号”探月卫星由长征三号丙运载火箭送入近地点高度约
公里、远地点高度约
万公里的直接奔月椭圆(地球球心
为一个焦点)轨道Ⅰ飞行。当卫星到达月球附近的特定位置时,实施近月制动及轨道调整,卫星变轨进入远月面
公里、近月面
公里(月球球心
为一个焦点)的椭圆轨道Ⅱ绕月飞行,之后卫星再次择机变轨进入以
为圆心、距月面
公里的圆形轨道Ⅲ绕月飞行,并开展相关技术试验和科学探测。已知地球半径约为
公里,月球半径约为
公里。
(Ⅰ)比较椭圆轨道Ⅰ与椭圆轨道Ⅱ的离心率的大小;
(Ⅱ)以
为右焦点,求椭圆轨道Ⅱ的标准方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知直线
与抛物线
相切于点
)且与
轴交于点
为坐标原点,定点B的坐标为
.![]()
(1)若动点
满足
|
=
,求点
的轨迹
.
(2)若过点
的直线
(斜率不等于零)与(1)中的轨迹
交于不同的两点
,试求
与
面积之比的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在
轴上,且过点
.![]()
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆
相切的直线
交抛物线于不同的两点
若抛物线上一点
满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
(a>b>0)的焦距为4,且与椭圆
有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.![]()
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l, F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是直角坐标平面内的动点,点
到直线
(
是正常数)的距离为
,到点
的距离为
,且
1.
(1)求动点P所在曲线C的方程;
(2)直线
过点F且与曲线C交于不同两点A、B,分别过A、B点作直线
的垂线,对应的垂足分别为
,求证
=
;
(3)记
,
,![]()
(A、B、
是(2)中的点),
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:
的离心率为
,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若
,求△ABM的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:
(
)离心率为
,上顶点M,右顶点N,直线MN与圆
相切,斜率为k的直线l经过椭圆E在正半轴的焦点F,且交E于A、B不同两点.
(1)求E的方程;
(2)若点G(m,0)且| GA|=| GB|,
,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com